Cystic liver disease

Matthijs Kramer, MD PhD Independent Gastroenterologist/Hepatologist E-mail: info@MDL-specialist.nl

Disclosures

No conflict of interest regarding this learning activity

Travel grant	Dr Falk, Abbvie
Speakers fee	Norgine, Bohn Stafleu van Loghum

Learning objectives

- Ductal plate malformations & cystic liver disease
- Complications of simple cysts
- Simple vs complex cystic lesions
- Biliary cystadenoma & biliary cystadenocarcinoma
- Polycystic liver diseases (concise overview)
- Your help with a case

Origin of biliary system: the ductal plate

(don't worry, just one slide on embryology)

<u>Ductal plate</u>: cylindric (double) layer of biliary epithelium surrounding portal vein ramifications. Undergoes remodeling and involution.

Remodeling starts at week 6-7 and proceeds from hepatic hilum to liver periphery

Ductal plate malformations

Late stage > smaller ducts Biliary hamartoma's (VMC) Congenital hepatic fibrosis

Middle stage: medium ducts PCLD

Early stage > large ducts

Choledochus cysts Caroli's disease

NB: in case of liver cysts and hamartomas the connection with bile ducts is lost!!

Image: Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine - Kyoto/JP

Solitary cystic lesions

(Incidental) finding of a cystic liver lesion

and then...?

(Incidental) finding of a cystic liver lesion

and then...?

Simple cyst?

Complex cyst?

Simple liver cysts

- Highly prevalent (2.5%-18%)
- Size: from small to very large
- Lined with cuboidal biliary-type epithelium (with secretory function)
- Contains serous fluid
- Often asymptomatic, unless very large or complications

Lantinga et al, World J Gastroenterol 2013; Borhani et al, AJR 2014; www.radiopaedia.org

When do liver cysts cause problems?

- **H** Haemorrhaging
- I Infection
- V Very large

Very large cysts

Problems:

Pain, dyspnea, early satiety. Decreased quality of life. **Treatment options**

Aspiration sclerotherapy

Fenestration

Ethanol Polidocanol Acetic Acid

Wijnands et al, Efficacy and safety of aspiration sclerotherapy, a systematic review, AJR 2017

Bernts et al, Clinical response after fenestration of symptomatic hepatic cysts, systematic review and meta-analysis, Surgical Endoscopy 2019

Effect of aspiration sclerotherapy

Reference	Year	No. of Patients	No. of Cysts	Volume Reduction (%)	Follow-Up (mo)			No. of Patients	Percentage With Symptom
Benzimra et al. [27]	2014	57	58	94.0 ^a (58.0–100) ^b	27.3ª	Reference	Year	With Symptoms	Reduction
Chrispijn et al. [28] ^c	2012	106	106	75.6 ^d (NS)	2.4 ²	Benzimra et al. [27]	2014	57	94.7
Jusufovic and Serem [36]	2011	20	20	96.3 ^d (74.9–100) ^e	24.0 ^d	Choi et al. [35] ^b	2009	21	85.7
Larssen et al. [37]	1997	10	10	90.8 ^d (77.0–100) ^e	17.3 ^d	Chrispijn et al. [28] ^b	2012	106	72.6
Nakaoka et al. [10]	2009	13	17	93.1 ^a (47–100) ^e	54.0 ^d	Larssen et al. [37]	1997	10	80.0
Nido and Wong [24] ^c	2012	14	19	84.4 ^d (24.8–100 ^{)e}	8.5ª	Montorsi et al. [38]	1994	21	100
Radjokovic et al. [39] ^c	2012	57	57	92.5 ^d (NS)	18.0 ^a	Nakaaka at al [10]	2000	12	100
Souftas et al. [40]	2015	10	14	100 (68.9–100) ^e	12.0 ^d		2009	15	100
Spârchez et al. [41]	2014	13	13	88.0ª (3.0–99.2) ^e	1.0 ^d	Nido and Wong [24] ^a	2012	14	100
Yan-Hong et al. [25]	2012	67	67	96.2 ^d (NS)	30.0 ^a	Souftas et al. [40]	2015	10	100
Yang et al. [30]	2006	27	31	98.1 ^d (83.6–100) ^e	29.6ª	Tikkakoski et al. [29]	1996	25	72.0
Zerem et al. [26]	2008	20	23	90.2 (76.9-180)*	24.0 ^d	Yan-Hong et al. [25]	2012	44	00.4
Range		10-106	10-106	76–100	1.0-54.0	Range		10–106	72.0–100

Safe and effective procedure (Radboudumc: semi-outpatient procedure). Pain most common complication. Ethanol intoxication (mainly in studies with high volume, long duration).

Wijnands et al, Efficacy and safety of aspiration sclerotherapy, a systematic review, AJR 2017

16 studies 526 patients PLD and non-PLD

Fenestration: procedure and effect

Laparoscopic approach

Puncture and aspiration

Cyst emptied

Deroofing of cyst

Symptomatic relief (pooled) 90.2%

Symptomatic recurrence 9.6%

62 studies 1314 patients PLD and non-PLD

Bernts et al, Clinical response after fenestration of symptomatic hepatic cysts, systematic review and meta-analysis, Surgical Endoscopy 2019

Fenestration: hospital stay & safety

Median hospital stay 5 days. Overall post-operative complication rate 10.8% (71.3% minor). Costs?

Bernts et al, Clinical response after fenestration of symptomatic hepatic cysts, systematic review and meta-analysis, Surgical Endoscopy 2019

Infection of liver cysts

Gold standard: cyst aspirate with leucocytes or + culture

Other criteria poorly validated and variable in literature

Pain 59-100% Fever 100% *

CRP median 120-220 Leucocytes not reliable

US and conventional CT less reliable FDG-PET CT highly sensitive!

Analyzed in only 40% of studies

Lantinga et al, Nephrol Dial Transplant 2015; Lantinga et al, Nephron 2016; Lantinga et al, AP&T 2014

Which bugs?

E. coli (18)

K. pneumonia (9) E. faecium (6) E. doacae (4) Enterococcus species (4) P. aeruginosa (3) H. parainfluenzae (2) Staphylococcus species (2) Citrobacter freundii (2) S. marcescens (1) A. baumannii (1) C. perfringens(1) E. aerogenes(1) S. maltophilia (1) A. baumannii (1) Salmonella typhi (1) Salmonella ajiobo (1) Salmonella paratyphi A (1) Klebsiella oxytoca (1) Bacteroides species (1) Gram-positive cocci (1) Anaerobic Gram-negative rods (1)

Lantinga et al, Nephrol Dial Transplant 2015

77% of cyst cultures positive

Top 3 micro-organisms:

E.Coli (30,5%)

K. Pneumoniae (15%)

E. Faecium (10%)

Management of cyst infection

Extremely heterogeneous approach in literature

Initial and final therapy for hepatic	All	Antimicr	obial					
cyst infection ($n = 54$)	therapies	All	Mono	Dual	Triple	Missing	Percutaneous	Surgical
Initial therapy, n (%)	54 (100)	30 (56)	12 (40)	6 (20)	5 (17)	7 (23)	17 (31)	7 (13)
Initial therapy outcome, n (%)							\frown	
Success	27 (50)	9 (30)	5 (42)	2 (33)	2 (40)	0 (0)	11 (65)	7 (100)
Failure	27 (50)	21 (70)	7 (58)	4 (67)	3 (60)	7 (100)	6 (35)	NA

Optimal therapy?

Consider early percutaneous approach when response to AB is incomplete.

Cyst haemorrhage and rupture

- Rare complication
- Sometimes asymptomatic, most common symptom is pain
- Management: conservative if possible
- If severe/HD instable: most experience with surgery

Fong et al, J Gastrointest Surg 2012,

Complex liver cysts

Complex liver cysts

Complex cyst ≠ *simple cyst*

Table 2. Appea	Table 2. Appearance of simple versus complex hepatic cysts with various imaging modalities							
	US	СТ	MRI	CEUS				
Simple cyst	Anechoic, homogeneous, aseptate, thin and smooth margins ^{1,3,6}	Nonenhancing, hypodense, smooth margins ^{1,3}	Nonenhancing T1: low signal T2: high signal ^{3,12}	Nonenhancing ⁶				
Complex cyst	Irregular border, hyperechogenic septations, loculations, shadowing beyond calcifications ^{1,3}	Multilocular, mural and septal enhancement, mural thickening and/or nodules, calcifications, debris containing fluid ^{12,15}	T1: hypointense cyst contents T2: hyperintense with low signal border ^{1,23}	Mural and septal enhancement ⁶				

Mavilia et al, J Clin Transl Hepatol 2018; Arnaoutakis et al, Ann Surg 2015; Farges & Vilgrain (ClinicalGate.com, chapter 69)

Complex cystic lesions

Haemorrhagic simple cyst

Biliary cystadenoma

Biliary cystadenocarcinoma

Infectious cysts

Cystic metastasis (GIST, pancreas, ovary, melanoma)

Cystic HCC

Lesions mimicking cysts (hematoma, biloma)

How to differentiate?

History (general, travel, pain)

Imaging characteristics

Previous malignancy?

Cirrhosis?

Trauma? Surgery?

Biliary Cystadenoma (BCA)

85-90%

- BCA is a complex liver cyst (see image)
- Risk of cystadenocarcinoma (BCAC) > how to distinguish?
- Mostly in middle-aged females (NB > biliary cystic lesions in males more often BCAC (33% vs 7.4%))

Bakoyiannis et al, World J Gastroenterol 2013; Arnaoutakis et al, Ann Surg 2015; Cannella et al, Curr Probl Diagn Radiol 2019

Differentiation between BCA and BCAC? N = 248**10** centers SIZE? USA, Europe, Australia Size BCA (n=221, 89.1%) BCAC (n=27, 10.9%) р median, cm (IQR) 0.056 10(7-12) 10.5 (7-15) LAB? Total (n = 248) BCA (n = 221, 89.1%) BCAC (n = 27, 10.9%)P Preoperative laboratory data Total Bilirubin (mg/dL), median (IQR) 0.6 (0.4-0.8) 0.6 (0.4-0.7) 0.7 (0.5-1.0) 0.844 CA 19-9 (U/mL), median (IQR) (n = 210) 15 (7.1-94.0) 15 (6.0-63.1) 210 (37.1-280.0) 0.647 CEA (ng/mL), median (IQR) (n = 210) 2.7 (1.0-4.6) 2.4 (0.9-4.6) 4.3 (1.9-90.0) < 0.001

CA19.9 elevation in BCA vs BCAC (30% vs 70%)

Size, laboratory or tumor markers are unsufficient to differentiate between BCA and BCAC.

Bakoyiannis et al, World J Gastroenterol 2013; Arnaoutakis et al, Ann Surg 2015; Cannella et al, Curr Probl Diagn Radiol 2019 ACG Guideline Focal Liver Lesions, 2014;

Differentiation between BCA and BCAC?

N = 248 10 centers USA, Europe, Australia

IMAGING?

	Total (n = 248)	BCA (n = 221, 89.1%)	BCAC (n = 27,10.9%)	Р
Multilocular cyst	141 (56.9)	123 (55.7)	18 (66.7)	0.093
Septa	163 (65.7)	145 (65.6)	18 (66.7)	0.913
Mural nodularity	41 (16.5)	24 (10.9)	17 (63.0)	<0.001
Calcification	25 (10.1)	16 (7.2)	9 (33.3)	<0.001
Hypervascular	19 (7.7)	10 (4.5)	9 (33.3)	<0.001
Enhancement after contrast	42 (16.9)	31 (14.0)	11 (40.7)	<0.001
Biliary ductal dilatation	44 (17.7)	36 (16.3)	8 (29.6)	0.087

Nodularity, calcification, contrast enhancement and hypervascularity are more common in BCAC, but are found in BCA as well

Abcence of ALL these features suggests BCA

Bakoyiannis et al, World J Gastroenterol 2013; Arnaoutakis et al, Ann Surg 2015; Cannella et al, Curr Probl Diagn Radiol 2019 ACG Guideline Focal Liver Lesions, 2014;

So what to do with a BCA?

Multidisciplinary approach

Often resection

(depending on patient and localisation)

Formal resection! High recurrence with deroofing or fenestration (≈ 50%)

Polycystic liver diseases

Polycystic liver diseases

Biliary hamartomas (Von Meyenburgh complex), 1:40/167

Autosomal dominant polycystic kidney disease (ADPKD), 1:400/2700

Autosomal recessive polycystic kidney disease (ARPKD), 1:10.000/26.500

Autosomal dominant polycystic liver disease (ADPLD), 1:100.000/1000.000

Caroli disease, 1:1000.000

Bergmann et al, Nature Rev Primers, 2018; Cnossen et al, Orphanet J Rare Dis 2014; Borhani et al, AJR 2014, Canella et al, CPD Radiology 2019)

Biliary hamartomas (VMC)

Late stage DPM Subcapsular/interlobular cysts MRI/MRCP "Starry sky" NO bile duct connection Sometimes subtle

May resemble metastases (Van Baardewijk et al, NTvG 2010)

Mostly uncomplicated course

No intervention or follow up necessary

Bergmann et al, Nature Rev Primers, 2018; Cnossen et al, Orphanet J Rare Dis 2014; Borhani et al, AJR 2014, Canella et al, CPD Radiology 2019)

Genes	disease	Disease liver phenotype
PRKCSH	ADPLD	Variable, usually multiple large cysts (>1 cm)
GANAB	ADPLD or ADPKD	Variable, usually multiple large cysts (>1 cm)
SEC63	ADPLD	Variable, usually multiple large cysts (>1 cm)
SEC61B	ADPLD	Innumerable small liver cysts
ALG8	ADPLD	Variable, usually multiple large cysts (>1 cm)
LRP5	ADPLD or ADPKD	Variable, usually multiple large cysts (>1 cm)
PKD1	ADPKD	Similar to ADPLD but less and smaller cysts than seen in ADPLD ^a
PKD2	ADPKD	Similar to ADPLD but less and smaller cysts than seen in ADPLD ^a
PKHD 1	ARPKD or ADPLD ^b	Innumerable small liver cysts ^b

Primary renal disease BUT: 83% has PLD

Δ PKD1 & PKD2 Protein: Polycystin Role in cilia function Role in Ca-influx HT (50-70%) i.c. aneurysms (< 8%) MV/AoV defects (<25%)

ESRD (dialysis) in 50% of patients by 60 years

Bergmann et al, Nature Rev Primers, 2018; Cnossen et al, Orphanet J Rare Dis 2014

ARPKD

Severe phenotypes Young age High mortality when early presentation Early ESR

∆ in PKHD-1 Protein: fibrocystin Role in: cilia function, gene

expression?

Biliary duct ectasia

Bergmann et al, Nature Rev Primers, 2018; Cnossen et al, Orphanet J Rare Dis 2014

ADPLD

Genes	Proteins	Localization	Function	Associated disease
PRKCSH	Glucosidase II subunit β or hepatocystin	ER	N-glycan metabolism	ADPLD
GANAB	Glucosidase II subunit α or PKD3	ER	N-glycan metabolism	ADPLD or ADPKD
SEC63	Translocation protein SEC63 homolog	ER	Protein translocation	ADPLD
SEC61B	Protein transport protein Sec61 subunit β	ER	Protein translocation	ADPLD
ALG8	α -1,3-glucosyltransferase	ER	Protein glycosylation	ADPLD
LRP5	Low density lipoprotein receptor-related protein 5	Plasma membrane	Receptor in canonical Wnt pathway	ADPLD or ADPKD

Hepatic disease Segmental or diffuse Women more affected than man. Some renal cysts possible NO renal disease! Multiple genes involved (PRKCSH, SEC63, LRP5 etc) In 50% unknown (genetic) cause Second hit hypothesis (somatic mutation important for disease phenotype)

Bergmann et al, Nature Rev Primers, 2018; Cnossen et al, Orphanet J Rare Dis 2014; Borhani et al, AJR 2014, Canella et al, CPD Radiology 2019; Lee-Law et al, Curr Op Gastroenterol 2019

Caroli disease & syndrome

Cystic dilatation or intrahepatic biliary tract. Central dot sign. Bile stasis, stones Cholangitis Cholangiocarcinoma Portal hypertension

Caroli disease = cystic dilatation of intrahepatic biliary tract, 1:1000.000

Caroli syndrome = cystic dilation of intrahepatic biliary tract + congenital hepatic fibrosis (often in patients with ARPKD).

Canelli's et al, Curr Probl Diagn Radiol. 2019; Bakoyiannis et al, World J Gastroenterology 2013

Take home messages

- Large symptomatic cyst: aspiration sclerotherapy or fenestration
- Diagnosis of cyst infection: FDG-PET might help, try to obtain culture, AB treatment often not enough
- Complex cysts: use multidisciplinary approach!
- Reliable differentiation between BCA and BCAC is difficult, consider resection in fit patients
- Polycystic liver without renal cysts: think ADPLD, management dependent on phenotype

Your help with a case...

Vrouw, 30

VG: appendectomie, hooikoorts Med: cetirizine, orale anticonceptie FA: onbekend (pleegkind)

A/ Buikpijn/vol gevoel, verminderde eetlust, geen koorts/pijnaanval

AO/ Beeld van PLD op beeldvorming, CRP 8, niet suggestief voor bloeding of infectie

B/ Uitleg over ziekte

Your help with a case...

Vrouw, 30

Gaan die cystes nog verder groeien dokter?

B/ Uitleg over ziekte

Natural course

Highly variable, even with same germline mutation. In prone subpopulation: 1-5 % volume f per year.

Risk factors

Old men

Oral contraceptives

Gevers et al, Gastroenterology 2013; Chebib et al, NDT 2016

Your help with a case...

Vrouw, 30

Wat kunnen we eraan doen dokter?

CRP 8, niet suggestief voor bloeding of infectie

B/ Uitleg over ziekte

Tailor made management

Van Aerts et al, J Hep 2018; Van Aerts et al, Gastroenterology 2019

Effect of long acting SA

Change in liver volume compared to baseline.

120 week lanreotide treatment vs placebo

Van Aerts et al, J Hep 2018; Van Aerts et al, Gastroenterology 2019

Your help with a case...

Vrouw, 30

Al Built Al Built Moet ik mijn kind van 4 genetisch laten testen? infectie

B/Uitleg over ziekte

When to think of PLD?

Patients with more than 10-20 hepatic cysts....OR

Cnossen et al, Orphanet J Rare Dis 2014

Quality of life in polycystic liver disease

Neijenhuis et al, United European Gastroenterol J 2018

Portal Hypertension in PLD

- Obstruction of veins due to strategically located cysts
- Portal Vein
- ► Hepatic Vein (HVOO)

Liver transplantation

Courtesy Jacques Pirenne, UZ Leuven

cAMP as driver

Cysts are lined with cholangiocytes Cyst growth due to fluid secretion & proliferation cAMP drives chloride & bicarbonate secretion + cholangiocyte proliferation Somatostatin analogues (lanreotide/octreotide): cAMP inhibitors

Polycystic liver

ADPLD Autosomal dominant polycystic liver disease ADPKD Autosomal dominant polycystic kidney disease

Effect of aspiration/sclerotherapy

Neijenhuis et al,