

Surveillance for hepatocellular carcinoma: current practice and future developments

K.J. van Erpecum

Dept of Gastroenterology and Hepatology University Medical Center Utrecht The Netherlands

Disclosure of speaker's interest

No (potential) conflict of interest

Outline of presentation

- 1. Background
- 2. Evidence that surveillance reduces HCC mortality
- 3. Tools for surveillance
- 4. Effectiveness of HCC surveillance in clinical practice

Outline of presentation

1. Background

- 2. Evidence that surveillance reduces HCC mortality
- 3. Tools for surveillance
- 4. Effectiveness of HCC surveillance in clinical practice

Hepatocellular carcinoma (HCC)

- Most frequent form of primary liver cancer
- 90% of patients have underlying chronic liver disease (cirrhosis)
- Worldwide: 5th most common cancer, 3th cancer-related mortality (approx. 650,000 deaths each year: 50% in China)
- In the Netherlands: relatively low HCC incidence, but increasing (NAFLD, immigrants)

Patient and clinical characteristics of 1223 HCC patients (approx. 60% of all HCC patients in the Netherlands) in the period 2005-2012

Patient nr	1223 (100%)
Etiology	
Chronic viral hepatitis	
- Hepatitis B	197 (16%)
- Hepatitis C	249 (20%)
- Co-infection	19 (2%)
Hemochromatosis	37 (3%)
Alcohol	349 (29%)
NAFLD	134 (11%)
Others	42 (3%)
No risk factors	196 (16%)

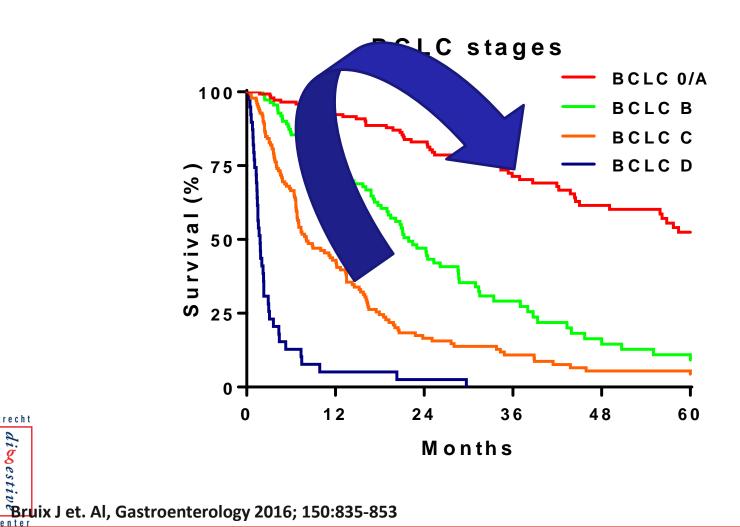
Hepatocellular carcinoma (HCC)

- Most frequent form of primary liver cancer
- 90% of patients have underlying chronic liver disease (cirrhosis)
- Worldwide: 5th most common cancer, 3th cancer-related mortality (approx. 650,000 deaths each year: 50% in China)
- In the Netherlands: relatively low HCC incidence, but increasing (NAFLD, immigrants)
- Prognosis in general poor: in 2011, in the Netherlands 47% of all patients any treatment, 20% resection or transplantation, 10% RFA (van Meer et al. Ned Tijdschr Geneeskd. 2014;158:A7074)

dissestive

Surveillance in cancer

Definition:


Repeated application of a test over time with the aim of reducing disease-specific mortality

Criteria:

- 1. Common disease with substantial morbidity and mortality
- 2. Identification of the target population
- 3. Screening test is acceptable
- 4. Screening test with low morbidity and high diagnostic accuracy
- 5. Well-defined recall strategy

Aim of surveillance: HCC detection at earlier stage may improve outcome

Utrecht

Welke patienten moet surveillance voor hepatocellulair carcinoom aangeboden worden?

- A) alle patienten met levercirrose
- B) high risk patienten met levercirrose + high risk hepatitis B "dragers" zonder cirrose
- C) alle patienten met levercirrose bij wie evt HCC behandeling mogelijk is
- D) high risk patienten met levercirrose + high risk hepatitis B "dragers" zonder cirrose wie evt HCC behandeling mogelijk is

Current recommendations for HCC surveillance

(only ultrasound at 6-month interval)

<u>Cirrhosis</u>	
Hepatitis B cirrhosis	
Hepatitis C cirrhosis	
Hemochromatosis cirrhosis	
Alcoholic cirrhosis	
Stage 4 primary biliary cholangitis	
No cirrhosis	
East asian male hepatitis B carriers over age 40	
East asian female hepatitis B carriers over age 50	
African/North Am. Blacks >20 yrs	
Hepatitis B carrier with family history of HCC	

AASLD: Dutch Guidelines

Outline of presentation

1. Background

2. Evidence that surveillance reduces HCC mortality

3. Tools for surveillance

4. Effectiveness of HCC surveillance in clinical practice

HCC surveillance: randomized controlled trials

-Cirrhosis: NONE

-Hepatitis C: NONE

-Hepatitis B (mainly carriers):

2 trials from China:

one showed no benefit (AFP alone every 6 months)

one showed benefit (ultrasound + AFP every 6 months)

-other underlying causes of liver disease: NONE

HCC surveillance: randomized controlled trials

-Cirrhosis: NONE

-Hepatitis C: NONE

-Hepatitis B (mainly carriers):

2 trials from China:

one showed no benefit (AFP alone every 6 months) one showed benefit (ultrasound + AFP every 6 months)

-other underlying causes of liver disease: NONE

Randomized controlled study from China

-5581 HBV carriers randomized to AFP determination at 6-month intervals or control group.

-HCC related mortality rates not significantly different (1138/100,000 vs 1114/100,000, P=0.86)

- 18,816 HBV+ patients recruited in China
- Randomized to:

Surveillance by US/6 months + AFP

No surveillance

- Cluster randomization
- Adherence: 60%
- HCC-related mortality was reduced by 37% in the surveillance arm

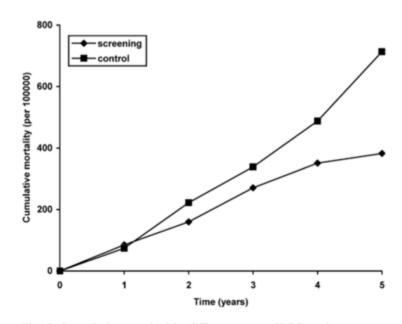
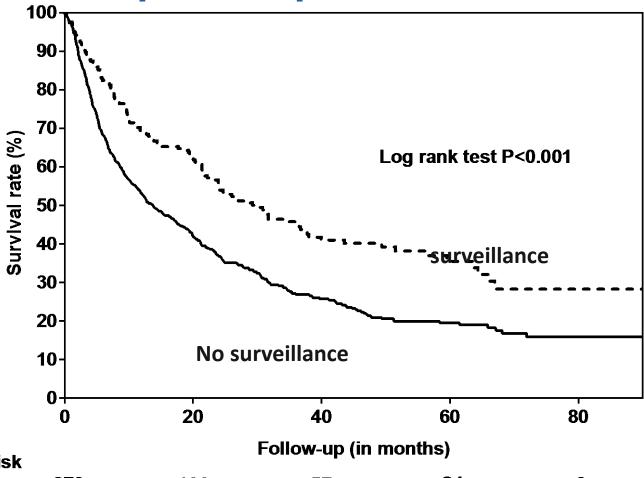


Fig. 5 Cumulative survival in different stages HCC patients

Effect of HCC surveillance: lower level evidence

 Several non-randomized trials and observational and case-control studies from high incidence countries


Wong LL et al. *Liver Transpl* 2000; **6:** 320-325

Gebo KA et al. *Hepatology* 2002; **36:** S84-S92

Solmi L et al. *Am J Gastroenterol* 1996; **91:** 1189-1194

Results from a large cohort in the Netherlands: surveillance independent predictor of survival

Number at risk

Surveillance: Non-surveillance: 720

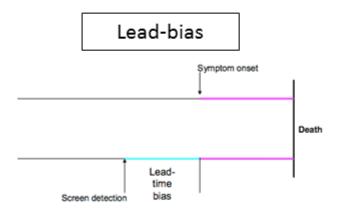
279

123 216 57 86 24 43

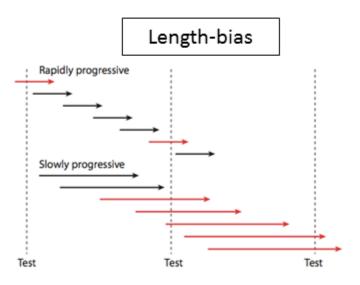
Clinical and tumor characteristics in the surveillance and non-surveillance groups

In the surveillance group:

- tumor size significantly smaller (2.7 cm vs 6 cm)
- AFP level significantly lower (16 vs 44 μg/L)
- earlier tumor stage (BCLC 0 and A combined: 61% vs 21%)
- resection/transplantation (34% vs 25%) and RFA (23% vs 7%)
 more often applied


Patient characteristics surveillance and non-surveillance groups

	Surveillance group	Non-surveillance group	P-value*
Patient no.	295 (27%)	779 (73%)	
Male gender	229 (78%)	585 (75%)	0.387
Age at HCC diagnosis (median, range)	60 (19-90)	64 (8-91)	<0.001
Etiology			<0.001
Chronic viral hepatitis			
- HBV	58 (20%)	113 (14%)	
- HCV	113 (38%)	93 (12%)	
- Co-infection	8 (3%)	8 (1%)	
Hemochromatosis	2 (1%)	18 (2%)	
Alcohol	71 (24%)	235 (30%)	
NAFLD	22 (7%)	154 (20%)	
Others	13 (4%)	20 (3%)	
No risk factors known	8 (3%)	138 (18%)	
Presence of cirrhosis	286 (97%)	470 (60%)	<0.001
Results indicate nrs and, between bracket	s, percentages, unless o	therwise indicated.	



Uncontrolled studies are affected by several biases:

Early detection advances what would have been the original date of diagnosis to an earlier point in time, but it does not necessarily follow that the patient's time of death will be delayed

Early diagnostic tools are more likely to pick up less aggressive lesions than rapidly lethal lesions

> Croswell J et al. Semin Oncol 2010;37:202-15. Kramer B et al. Annu Rev Med 2009;60:125-37.

Risk of overdiagnosis: the detection of cancer that would have otherwise not been identified in a patient's lifetime:

Breast cancer: 15-25%

Prostate cancer: 23-60%

Lung cancer: 25%

Thyroid cancer

Renal cancer

Neuroblastoma

- ...

Randomized controlled trials are needed to confirm the efficacy of surveillance in HCC!!!!

Sandhu G et al. J Natl Cancer Inst Monograph. 2012;45:146-51.
Veronesi G et al. Ann Intern Med 2012;157:776-84.
Welch, Black. J Natl Cancer Inst. 2010;102:605-13.

National Cancer Institute at the National Institutes of Health

Benefits

Based on fair evidence, screening would not result in a decrease in mortality from hepatocellular cancer.

Magnitude of Effect: No reduction in mortality.

Study Design: Randomized controlled trials.

Internal Validity: Fair.

Consistency: Multiple studies, large number of participants.

External Validity: Fair.

Annals of Internal Medicine

IDEAS AND OPINIONS

Screening for Liver Cancer: The Rush to Judgment

Frank A. Lederle, MD, and Christine Pocha, MD, PhD

RCTs are requested in non-Asiatic populations

www.cancer.gov/cancertopics/pdq/screening/hepatocellular/HealthProfessional/page1.

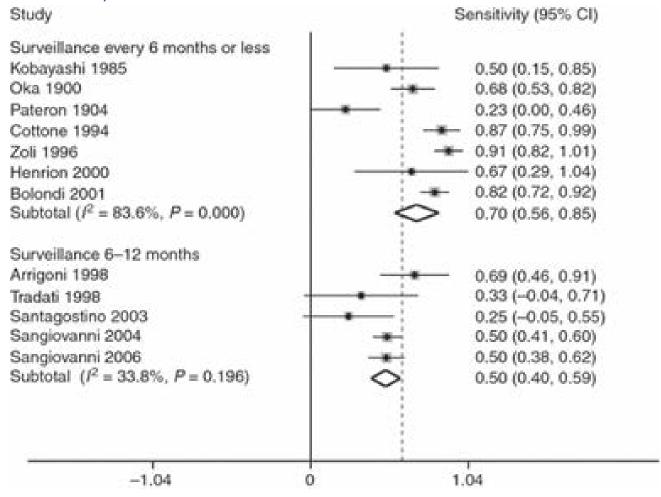
Lederle FA, Pocha C. Ann Intern Med. 2012;156:387-9.

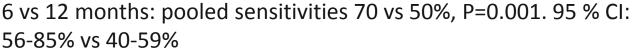
- The authors tested the feasibility of conducting a randomized controlled trial of HCC surveillance in patients with cirrhosis in Australia
- The proposed screening program comprised ultrasonography
 6 monthly and serum alpha-fetoprotein every 3 months
- Among 205 patients, 204 (99.5%) declined randomization

A randomized study of HCC screening is not feasible when informed consent is required

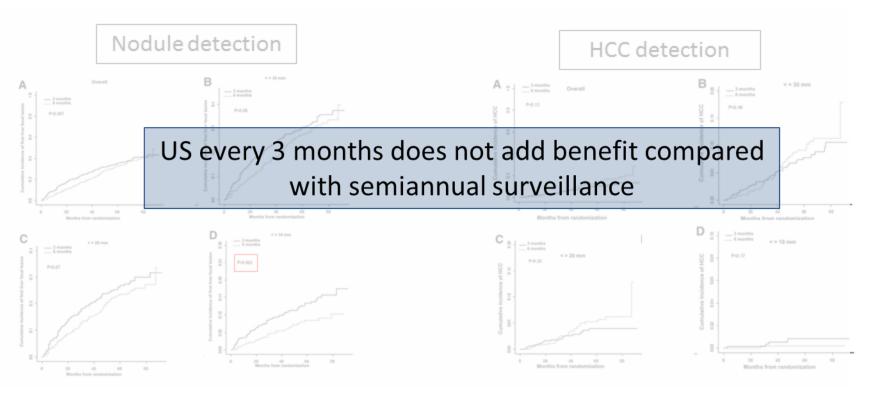
Outline of presentation

- 1. Background
- 2. Evidence that surveillance reduces HCC mortality
- 3. Tools for surveillance
- 4. Effectiveness of HCC surveillance in clinical practice


Hoe moet surveillance voor HCC verricht worden?

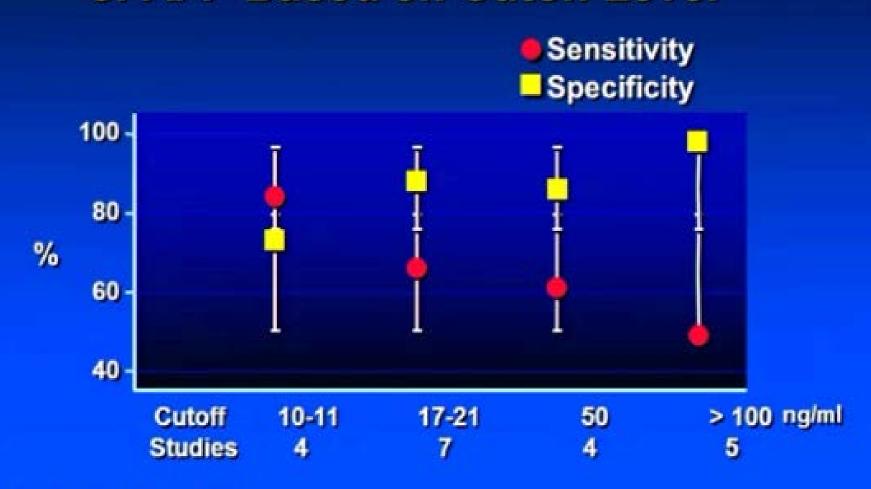

- A) Echografie elke 6 maanden
- B) Echografie elke 12 maanden
- C) Echografie + alfafoetoproteine elke 6 maanden
- D) Echografie + alfafoetoproteine elke 12 maanden

Sensitivity of ultrasound to detect early stage HCC (within Milan criteria): 6 vs 12-month intervals (Metaanalysis by Singal et al. APT 2009;30:37)



Surveillance interval

Multicenter (43 sites), RCT. A total of 1,278 patients were randomized (3m=640 vs 6m=638)


Alpha-fetoprotein for HCC surveillance

- -Not recommended by AASLD, EASL, Dutch guidelines.
 Recommended by APASL guideline in combination with US.
- -20% of HCC cases are detected solely based on increased AFP (with normal ultrasound).
- -available positive RCT from China used combined US + AFP
- -Frequent false-positive results, related to increased transaminases.

-most of false positive results can be prevented by ordering AFP only in case of relatively low transaminases

Performance Characteristics of AFP Based on Cutoff Level

Outline of presentation

The controversities

- 1. Evidence that surveillance reduces HCC mortality?
- 2. High risk groups?
- 3. Ultrasound, alfa-fetoprotein or both and at what interval?
- 4. <u>Effectiveness of HCC surveillance in clinical practice?</u>

Cost-effectiveness of HCC surveillance

The decision to enter in a surveillance program is determined by the risk of HCC, the life expectancy, and the cost you assume to expend

•An intervention is considered cost-effective if it provides increase in longevity of about 100 days with a cost of less about \$50,000/year of life gained (QALY)	

Bruix J, Sherman M. Hepatology. 2011;53:1020-22. EASL-EORTC GP Guidelines. J Hepatol. 2012;56:908-43. Neumann P et al. NEJM. 2014;371(9):796-797.

Target population for surveillance

Surveillance is cost-effective if the estimated HCC incidence is $> 1.5\%$ in cirrhotic patients and $> 0.2\%$ in non-cirrhotics	С

Bruix J, Sherman M. Hepatology. 2011;53:1020-22. EASL-EORTC GP Guidelines. J Hepatol. 2012;56:908-43.

High risk groups proposed for HCC surveillance (ultrasound at 6-month interval)

Only consider surveillance in patients suitable for active HCC therapy

Insufficient evidence to propose surveillance

Population group <u>Cirrhosis</u>	Threshold incidence for cost effectiveness of surveillance (%/year)	Incidence of HCC
Cirrhosis due to non-alcoholic steatohepatitis	???	<u></u>
Cirrhosis from autoimmune hepatitis	1.5	1.1%/yr
Cirrhosis from α1 antitrypsin deficiency	??	??
Cirrhosis due to cystic fibrosis	??	??
No cirrhosis		
Severe fibrosis from viral hepatitis,alcohol, hemochromatosis, PBC	??	??
Hep B pt, no cirrhosis but other risk factors	??	??

Controversies in HCC surveillance (1): NAFLD/NASH

- NAFD/NASH contributes large proportion of HCC pts in western world but:
- In cirrhotics only modest HCC risk (cumulative incidence ranging from 2.4% over 7 yrs to 12.8% over 3 yrs)
- 40% of all HCCs in NAFLD in non-cirrhotics
- Surveillance by ultrasound ultrasound often not reliably because of morbid obesity
- Curative HCC treatment often not feasible because of comorbidities

Controversies in HCC surveillance (2): alcoholic cirrhosis

Recent large cohort study from Denmark (Jepsen P. et al. Ann Int Med 2012 ;156:841-7)

8482 patients in period: 1993-2005

HCC incidence 1th year 9.8/1000 → excluded

HCC incidence 2nd year 3.8/1000

Total mortality after 5 years: 44% 88% not related to HCC
Only 1.8% HCC related
10% unknown

Conclusion:

Annual HCC risk 0.25-0.5% (< 1.5%) Surveillance not justified??

Research Article

Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy*

María Reig¹⁻¹, Zoe Mariño²⁻¹, Christie Perelló³, Mercedes Iñarrairaegui⁴, Andrea Ribeiro¹, Sabela Lens², Alba Díaz⁵, Ramón Vilana⁶, Anna Darnell⁶, María Varela⁷, Bruno Sangro⁴, José Luis Calleja³, Xavier Forns²⁻², Jordi Bruix¹, ⁸⁻¹

****Parcelona Clinic Liver Caneer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, DBIAPS, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermédica Hepólicas y Digestivas (CIBERAH), Barcelona, Spain: **Liver Unit, Hospital Clinic Hospital Clinic Hospital Clinic Algorita Clinic Company (Spain: **Liver Unit, Hospital Universitario hereto de Hierro, CIBERAH, DIFHIM, Madrid, Spain: *University of Barcelona, Ciberato de Navarra, DiSNA, CIBERAH, Ampliona, Spain: **Department of Parhology, ECC Protop, Hospital Clinic Barcelona, DIBAPS, University of Barcelona, Spain: **Department of Paddology, BCLC Group, Hospital Clinic Barcelona, Dispital University of Barcelona, Spain, **Liver Unit, Hospital University of Barcelona, Dispital University

See Editorial, pages 663-665

13.04.2016

Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals

Fabio Conti^{1,4}, Federica Buonfiglioli^{1,4}, Alessandra Scuteri², Cristina Crespi², Luigi Bolondi³, Paolo Caraceni³, Francesco Giuseppe Foschi⁴, Marco Lenzi³, Giuseppe Mazzella³, Gabriella Verucchi³, Pietro Andreone^{1,4}, Stefano Brillanti^{1,4,4}

¹Research Centre for the Study of Hepatitis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy;

²Department of Digestive Diseases, Policianico S. Grosola-Molpighi, Bologna, Italy;

²Department of Medical and Surgical Sciences (DIMEC),

University of Bologna, Italy;

²Division of Internal Medical Fanna, Italy

Internal Medical and Surgical Sciences (DIMEC),

Diseases (DIMEC), University of Bologna, Italy;

**

See Editorial, pages 663-665

24.06.2016

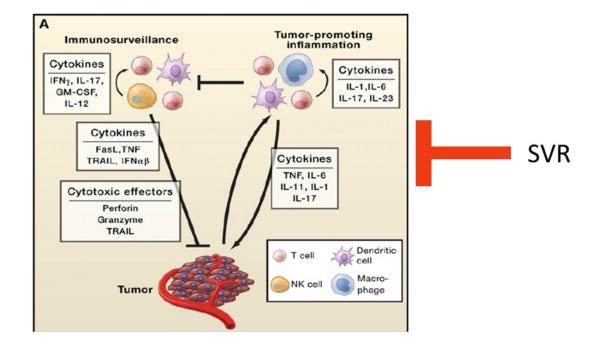
Letters to the Editor

High incidence of hepatocellular carcinoma following successful interferon-free antiviral therapy for hepatitis C associated cirrhosis

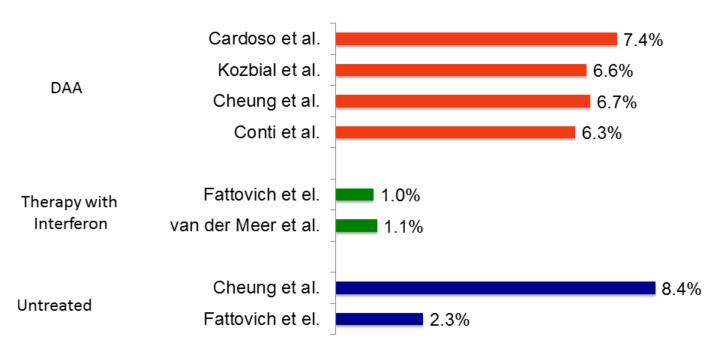
Direct antiviral agents and risk for HCC early recurrence: Much ado about nothing

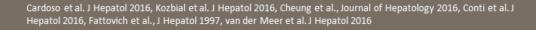
Direct acting antiviral therapy and tumor recurrence after liver transplantation for hepatitis C-associated hepatocellular carcinoma

Reply to "Direct antiviral agents and risk for hepatocellular carcinoma (HCC) early recurrence: Much ado about nothing"


Hepatocellular carcinoma recurrence after treatment with direct-acting antivirals: First, do no harm by withdrawing treatment

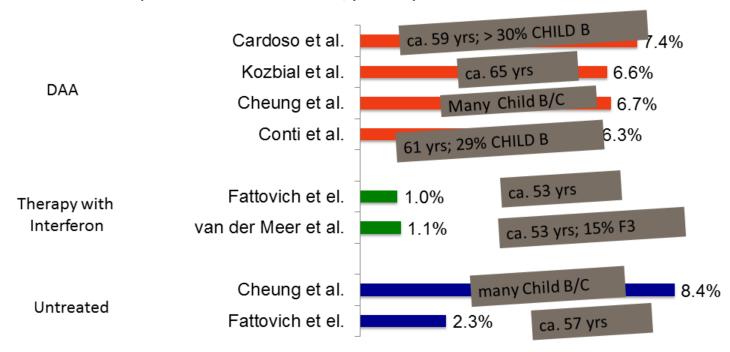
Unexpected high incidence of hepatocellular carcinoma in patients with hepatitis C in the era of DAAs: Too alarming?


DAA and HCC: A potential explanation



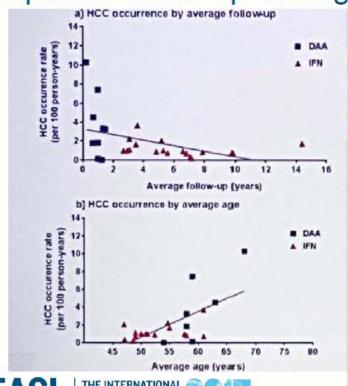
DAA-Therapy and "de-novo" HCC

presumed HCC-Incidence/year in patients with cirrhosis



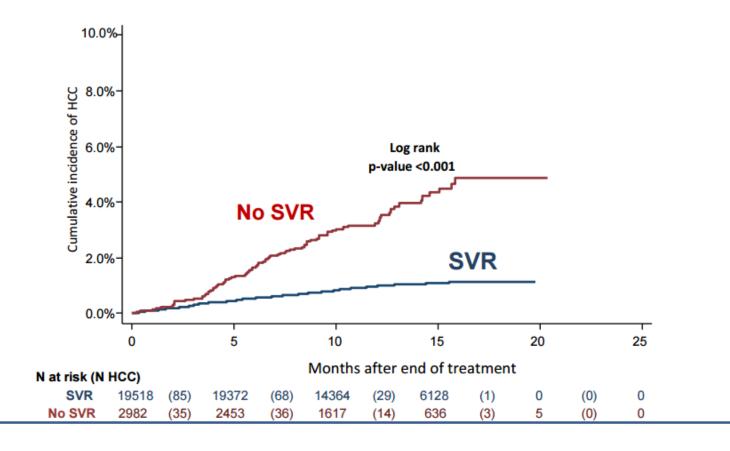
DAA-Therapy and "de-novo" HCC

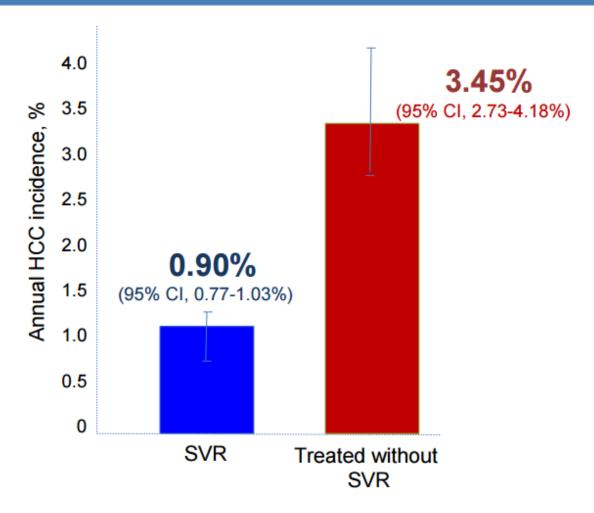
presumed HCC-Incidence/year in patients with cirrhosis


Cardoso et al. J Hepatol 2016, Kozbial et al. J Hepatol 2016, Cheung et al., Journal of Hepatology 2016, Conti et al. J Hepatol 2016, Fattovich et al., J Hepatol 1997, van der Meer et al. J Hepatol 2016

DAA and HCC?

Impact of follow-up and age


THE INTERNATIONAL LIVER CONGRESS"


Results Cumulative HCC incidence rates by SVR

Results Annual HCC incidence rates by SVR

Summary and Conclusions

HCC incidence increasing in Western world, poor prognosis

Modest, but suggestive evidence for efficacy of surveillance in high risk groups

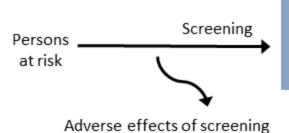
Ultrasound at 6-month interval is key, not AFP alone:

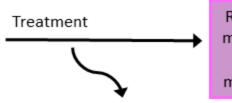
Continue at this moment HCC surveillance in DAA-cured HCV pts with F3/4 cirrhosis or comorbidities

HCC Surveillance in 14,837 HCV-Infected Veterans with Cirrhosis (1997-2007)

AFP or ultrasound tests for	n (%)
HCC surveillance	
Routine surveillance	12.0
Inconsistent surveillance	55.9
No surveillance	32.1
1-year following cirrhosis diagnosis date	42.0
2-years	33.8
3-years	34.7
4-years	35.6

Davila J, et al. Ann Intern Med; 2011


Cost-effectiveness of HCC surveillance


Assessing the benefits and harms of early detection

Societal trade-offs:

- Opportunity costs
- Cost-effectiveness

Early detection of target condition

Reduced morbidity and/or mortality

Adverse effects of treatment

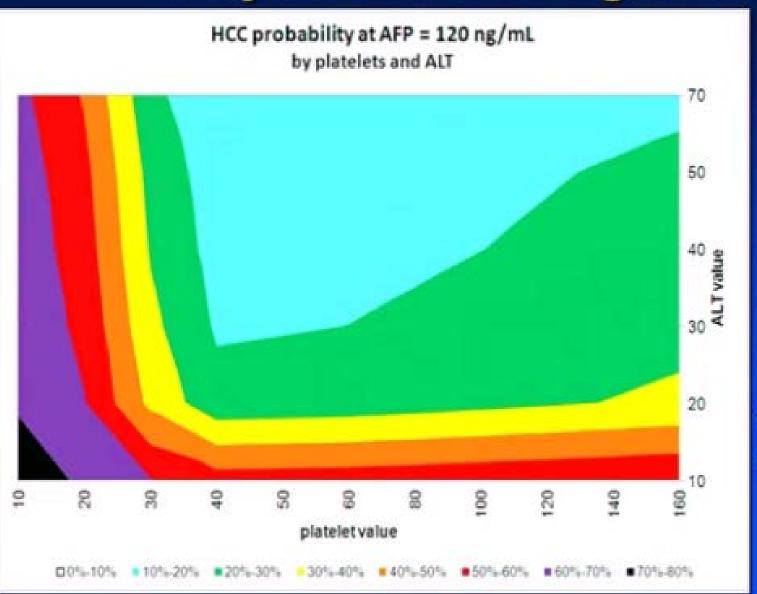
False positive results:

- -Negative psychological consequences
- -Triggering of more invasive diagnostic procedures
- -Substantial economic burdens

Complications of screening test

Croswell J et al. Semin Oncol 2010;37:202-15. Kramer B et al. Annu Rev Med 2009;60:125-37.

Critical comments


- Not all deaths were reported
- Inadequate statistical analysis (did not account for cluster randomization)
- Some patients excluded after randomization
- Patients did not know that they were in randomized study

May not be applicable to patients in Western world

Adjusted AFP Algorithm

Richardson P. DDW 2013